Skip to main content

AI Skills for Pinecone

Discover 19+ Vector database

Install any skill with /learn

/learn @owner/skill-name

Browse AI Skills for Pinecone

wshobson wshobson / langchain-architecture

28.6K

Design LLM applications using LangChain 1.x and LangGraph for agents, memory, and tool integration. Use when building LangChain applications, implementing AI agents, or creating complex LLM workflows.

plugin claudedevelopmentopenaipineconefrontenddesign +6

wshobson wshobson / rag-implementation

28.6K

Build Retrieval-Augmented Generation (RAG) systems for LLM applications with vector databases and semantic search. Use when implementing knowledge-grounded AI, building document Q&A systems, or integrating LLMs with external knowledge bases.

plugin claudedevelopmentpineconelangchainfrontenddocx +5

wshobson wshobson / similarity-search-patterns

28.6K

Implement efficient similarity search with vector databases. Use when building semantic search, implementing nearest neighbor queries, or optimizing retrieval performance.

plugin developmentpineconefrontenddocx

openclaw openclaw / engram

996

Provides semantic search for a local knowledge base using Pinecone and Gemini embeddings.

developmentpineconegoogle-geminifrontenddocx

majiayu000 majiayu000 / agent-sdk-dev

80

Agent SDK development utilities for creating, testing, and managing AI agents with comprehensive tooling and debugging capabilities.

claudedevelopmentawsvercelfrontenddesign +7

majiayu000 majiayu000 / ai-agent-upskilling

80

Comprehensive L&D framework for upskilling DevOps/IaC/Automation teams to become AI Agent Engineers. Covers LLM literacy, RAG, agent frameworks, multi-agent systems, and LLMOps. Designed to help traditional automation teams compete with OpenAI and Anthropic.

claudeclaude-codedevelopmentpineconelangchainfrontenddesign +9

majiayu000 majiayu000 / ai-engineer-agent

80

Build LLM applications, RAG systems, and prompt pipelines. Implements vector search, agent orchestration, and AI API integrations. Use when building LLM features, chatbots, AI-powered applications, or need guidance on AI/ML engineering patterns.

claudedevelopmentopenaianthropicfrontenddesign +8

majiayu000 majiayu000 / ai-engineer

80

Build production-ready LLM applications, advanced RAG systems, and

claudedevelopmentopenaiollamafrontenddesign +6

majiayu000 majiayu000 / context-manager

80

Elite AI context engineering specialist mastering dynamic context

data-analyticspineconefrontenddesign +3

majiayu000 majiayu000 / llm-app-patterns

80

Production-ready patterns for building LLM applications. Covers RAG pipelines, agent architectures, prompt IDEs, and LLMOps monitoring. Use when designing AI applications, implementing RAG, building agents, or setting up LLM observability.

claudedevelopmentpineconeopenaifrontenddesign +6

majiayu000 majiayu000 / backend-rag-implementation

80

Build Retrieval-Augmented Generation (RAG) systems for LLM applications with vector databases and semantic search in FastAPI backends. Use when implementing knowledge-grounded AI, building document Q&A systems, or integrating LLMs with external knowledge bases.

developmentpineconeopenaifrontenddocx +3

majiayu000 majiayu000 / context-manager

80

Elite AI context engineering specialist mastering dynamic context

data-analyticspineconefrontenddesign +3

majiayu000 majiayu000 / context-manager

80

Elite AI context engineering specialist mastering dynamic context

data-analyticspineconefrontenddesign +3

majiayu000 majiayu000 / faion-ml-engineer

80

ML/AI orchestrator: LLM integration, RAG, ML Ops, agents, multimodal.

claudedevelopmentopenaianthropicfrontendreact +6

majiayu000 majiayu000 / ai-llm-skills-guide

80

Guide for AI Agents and LLM development skills including RAG, multi-agent systems, prompt engineering, memory systems, and context engineering.

developmentpineconefrontenddesign +1

majiayu000 majiayu000 / ai-native-development

80

Build AI-first applications with RAG pipelines, embeddings, vector databases, agentic workflows, and LLM integration. Master prompt engineering, function calling, streaming responses, and cost optimization for 2025+ AI development.

claudedevelopmentpineconeopenaifrontenddesign +8

majiayu000 majiayu000 / genai-integration

80

Expert guidance for integrating GenAI models, workflows, and observability into applications. (use when designing or implementing LLM/agent/RAG integrations)

developmentawsvercelfrontenddesign +4

majiayu000 majiayu000 / Directus AI Assistant Integration

80

Build AI-powered features in Directus: chat interfaces, content generation, smart suggestions, and copilot functionality

claudecopilotproductopenaianthropicfrontenddocx +6

majiayu000 majiayu000 / Directus Development Workflow

80

Complete development setup: scaffolding, TypeScript, testing, CI/CD, Docker, deployment, and best practices

claudevscodedevelopmentdockergitlabfrontenddesign +16